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1. INTRODUCTION

The well-known Bernstein polynomials are given by

n

B0 =Y (J) 2t — (X))

k=0

> (&) pead. am

k=0

It was shown by H. Berens and G. G. Lorentz [1] that | B,(f, x) — f(x)] <
M(x(1 — x)/n)*? if and only if f'€ Lip* «, i.e., if and only if || 4, llctn.1n) =
1f(x + B — 2f(x) + f(x — BDllectr.1-r) = O(h*). The combination of Bern-
stein polynomials given by

(2T - 1) Bn(f; r, X) = erZn(f; r— l,X) - Bn(f: r— ]7X)7

(1.2)

B.(f, 0, x) = Bu(/, x).
was introduced by P. L. Butzer [2] who showed that for smooth functions
B.(f, k, x) — f(x) tends to zero faster than B,(f, x) — f(x). In [3] the local
saturation of B,(f, k, x) — f(x) was investigated. C. P. May [5] found a local
inverse theorem for B,(f, k, x) — f(x) (in fact, a more general combination
was treated). These results related || B, (f, k, ) — f()lcia,51 to smoothness in
(«, B) where [«, 8] C (a, b) and [a, b] C (0, 1). Since [3] and [5] have appeared
some mathematicians expressed interest in the corresponding global result.
In this paper we shall overcome the difficulty caused by the singularity at 0
and 1, and obtain such a result. We shall use the technique of space inter-
polation and characterize in Section 5 the intermediate space in an elementary
way (that is, using smoothness rather than interpolation between spaces).
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278 Z. DITZIAN
2. THe MaIN REesuLT

In this section we shall state the main result of the paper. We shall also
analyze what inequalities are needed for the proof which will be completed
in later sections.

Let us denote || fIl = supoce<y | f(OL 11 fller = SUPg<acy | £37(x) x7(1 — x)|
and A, = {f: | fllsr < o0 and f@-V(x) e AC locally} (f?1V being abso-
lutely continuous locally so that [*f@"(u) du = f@r(x)). The Peetre K
functional is given by

K>, f) =gi€1}‘2fr W — gl + 7 ]l g llars- 2.1

The intermediate space (C, 4,,); for some 0 << 8 < 2r is the collection
of all f for which the norm sup,., £ ?K(¢%, f) is finite. One can easily see that

it is equivalent to use Ky(r¥,f) = infoes (1f ~ gl + (I + I g o)
instead of K(1%, f).

THEOREM 2.1. For feC[0,1], B.(f,r — 1, x) given by (1.2) and 0 <
B << 2r the following aré equivalent:
(A) IB(fir — 1, x) — f(x)] = O(n*7%), n — oo;
(B) fe(C, Ay)s;
(O suUPprcocrnr (1 — X2 A2ATf(x) <M where 4 f(x) =
f&x + hj2) — f(x — h)2).

THEOREM 2.2. In Theorem 2.1, (A) can be replaced by

| Butn(fs X) — f()] = O*7), n— o0
where

Buo(R) = ¥ Cio) Bl )

satisfies:

(@ n=mny, <n; <n._, < Kn (K independent of n);
(®) Yiss | Cim)| < C (C independent of n);
© i Cim) = 1; and

@ i CmUne) =0,p=1,2.,r—1.

Remark 2.1. Ttisobvious that B,(f, r — 1, x) is a special case of B, »(f, x)
with Cyi(n) = C; and n; = 2in. The combinations treated by C. P. May [5]
are also a special case. However, we do not see much advantage in the
generalization of Theorem 2.1 in Theorem 2.2 as it yields no new idea but is
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just an observation of what is used. We will simply mention, while proving
Theorem 2.1, when (a)-(d) may replace special properties of B,(f, r — 1, x).

Remark 2.2. For r = 1 the equivalence of (A) and (B) as well as (B)
implies (C) was shown by Berens and Lorentz [1]. However, (C) implies (B)
was not shown there and is new even for r = 1.

Remark 2.3. Since the result displayed most prominantly in Berens and
Lorentz” paper is | B(f, x) — f(x)| < M(x(1 — x)/n)** if and only if
felip*a, 0 <o <2, one would expect | B, (f,r —1,x)— f{x)] <
M(x(1 — x)/n)/2 if and only if SUPscpc1_rs | Ao (X)) < Mh*for 0 < a < 2r.
This result is not true since for f(x) = x*and r = 2| B,(f, 1, x) — f(x)| ~
x(1 — x)(1 — 2x)/n? (and one may choose x = l/n and « = 4 — ).

The proof of the equivalence of (B) and (C) has no relation with Bernstein
polynomials and will be given in Section 5.

The proof of the implication (B) = (A) is of the type usually called direct
theorem and will be obtained in Section 4.

To prove that (A) implies (B), a direction usually called the inverse result,
we write

K@, f) < Bu(fir — Lx) — fOI + 2| Bu(f,r — 1, Xz . (2.2)

We recall that (A) yields || B.(f, r — 1, x) — f(x)Il << M/n?/? and that (1.2)
yields B, (f, r — 1, x) = Yo<icr_1 CiByin(f, x) and therefore

I B,(f,r — 1, x), <M, _sup | Byin( S5 ) Hly, - (2.3)

0%i<r-1
It is enough to show the following two inequalities:

| Bu(fs X)ller < Mon™ || £ (2.4)
and

I Balf, Xller < Myl flloy  for feAd,, . (2.5
These combined with (2.2) and (2.3) imply

K@%, f) < Mym2"2 + 2 K(n~", f)), nz=n,, (2.6)

which, following Berens and Lorentz’ method, implies K(¢%, f) <X M 5. We
shall prove (2.4) and (2.5) in Section 3. We may observe that, pending (2.4)
and (2.5), we proved that || ¥i_y Cyn) B, (f, x) — f(x)l < Myn” with
| Ci(m)| < Myandn = ny < ny < -+ < n,_; < Knimplies f'e (C, 4,,); and
this does not depend on the particular structure of (1.2). It is for the direct
theorem that we need either (1.2) or a similar combinatorial structure ((c) and
(d) of Theorem 2.2).
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3. THE COMPLETION OF THE INVERSE RESULT

In this section we shall prove (2.4) and (2.5) which together will complete
the proof of the inverse result.

Lemma 3.1, For fe C[0, 1],
BY(f, %) = ,), z 21 f (XY Psat)

where . (3.1
dnf () =f(x + 1) = FG0).

Proof. See [4, p. 12]. (45, f(x) here is not the same as in [C] but rather

as in [4]; it will be used only in this section, so there is no possibility of

confusion).

LemMA 3.2, For P, ,(x) given in (1.1) we have

n m ]
Y Ty P < (3.2)
k=0
and
< n" m!
’Z«o n—k-+ D" Pplx) < [ (3.3)

Proof. Tnequality (3.3) follows (3.2) substituting € =1 —x and
v = n — k. We can write

S L& o (k4D Gk +m)
Z k + 1 Pri(x) < xm Sk +D" (n+ 1) (n+ m) P k()

k=0

m' n+m

Z Pn+m Ic+m(x) < X_m Z Pn+m v(x)

LemMMA 3.3. Suppose X'f*(x) e L,[0, 1], and f* 2 (x)e€ A.C.[«, B] for
all 0, 8,0 < a < B < 1, where X = x(1 — x). Then, form = 1,2,..,r — 1,

| Xromfermme)) < Blm){ fler £ 1171D- (B4
Proof. Tt is well known that

LFE=(8) | < Bl 27 e prasra + U flicarasm) < KBu(ll fller + 111D,
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since this follows a Kolmogorov type inequality for an interval. 1t is enough
to prove the theorem for x <  since the proof for x > } is very similar.
By induction we have

1/2
If(2r—m)(x) —_ f(2r~—‘m)(%)| — t J‘ f(2r—m+1)(u) du l
<BOm— 1) K- (Sl 11D [ e

and therefore

Xt | fermx)) < Blm — 1) K(Ifller + 1LFID + [ FE(D)

which completes the proof.
We are now in a position to prove (2.5) and (2.4) which will constitute
Lemmas 3.4 and 3.5 respectively.

LemMA 3.4. Let fe Ay, ; then (2.5) is valid, i.e.

” Bn(.f’ x)”zr < K”f”zr .

Proof For1 <k <n — 2r — L and 4y, f(kfn) = f((k + 1)/n) — f(k/n),
we have

2r " (27) llfllzr
BT ()| < 28 1O < e k2

n2r

We will show that for k = 0 (and similarly for k = n — 2r) | n?47, f(0)| <
Kn" || fllay . Using Lemma 3.3 (which will be used later in full generality) to
justify integration by parts, we have

w s, f0) = Y ()= 1er(X)

k=0

~am g (e [ e

2r— lnz,-( )H—l 2r i 2r—1

LT R (G G = L
We can now write

T e [T | ) du < M Sl
= (2r — 1)' 0 = 1 2r ?
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and

27— i 2 e [ K
I = (—ay kgl(—l)k(k’)klf‘“ (+)

i

=T (i ;Zl (—1)k(i’)(§: ookl — 1) - (k — l))f‘“ (£)

-1
= z Jia
=0
where «; depends on / and / only. We have now

=D § (=] )

i1
B k=141

2r - Q2r —1 . L 141
_ ‘ o, r (i! ) ner—i Aﬁ;l—lf(t) ( ‘l; )|
27— 273 £(4) -} + 1 l
S Mo 1<Siu<pi—1 l Ats ( n )
<M, sup ()] < M, z—“f”w
1) in<e<2rn “((+ Diny

which concludes the proof of | n27437, f(0)] < Kn” || fllar -
Therefore, using Lemma 3.1,

X" | B/, x)|

<a"X"S | A f (2] Pacarst
. = Pogr 1(X)
< Kl ”fHZr X kgo ((k + l)/n)’ ((n — 2r + 1 — k)/n)r
n—2r X X"
< Kl ”.f”ZT kz=:0 ((k _I__ 1)/n)r + ((n R, + 1 — k)/n),‘ Pn—zr.k(x)

which, using Lemma 3.2, implies (2.5).

LEMMA 3.5. For fe C[0, 1], (2.4) is valid, i.e., || Bu(f, X)llr < An™ || f1.
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Proof. For x that satisfies min(x, | — x) < B/n, using Lemma 3.1, we
write

n—2r

X B, 0l S XTne(n—2r4-1) Y | 4%, f (%)1 Py g iX)
k=0

S — X220 | fIl <07 - 27| flilnx(l — 27
<n2BT| f]l.
The case B/n << x << 1 — B/n is somewhat more complicated. One can

write P, ;(x) = ((k — nx)/x(1 — x)) P, (x). Repeated differentiation shows
that P$7(x) is a sum of terms of the type

k —_ nx)27'—2l—m nt

(
ql.m(x) (X(l . x))zr__L Pﬂ.k(x)

where !/ > 0,m > 0,2r — 2/ — m > 0 and ¢, ,,(x) is a polynomial in x that
does not depend on n and k. To complete the proof of the Lemma we have to
estimate | X"BE"(f, x)| for Bjn < x < 1 — (B/n)(B/n < }). Since X"BE"(f, x)
is the sum of elements of the type

1, m, m) = gun) Xt Y. (k= mxprtm (%) ) for £om >0

k=0

and 2r — 2/ — m = 0, we have to estimate I(/, m, n) for Bjn < x < 1 — B/n.
Using the Cauchy-Schwartz inequality, we have

n 1/2
G, < 1 O] X1 LF 3 1 — e r-tcem Pn.k(x)) .

k=0

Recalling the definition of T, (x) ([2] and [4]) i.e.

To®) = 3 (k — nx)? Poa(), (3.5)

we shall show

| T, 00| < Kn*X* for % <x<l-— % (3.6)

Using (3.6), we have

I(l, m, n) < KX Tpipr=t-mizxr-l-m/2 | £

< Kn'tax(l — 121 £ < K ()™ 71
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To prove estimate (3.6) we recall [2, p. 56]

Tn.s+1(x) = X[T;z,s(x) + nSTn,s—l(x)]a Tn,o(-x) =1, Tn.l(x) = 0. (37)
Therefore (as can be proved by induction),

s—1

T 2o(x) = pon(x(l — x))* + Z Pi,X)nx(1 — x)J~* (3.8)

and
Tosin = bl = 29i(x(1 — ) + 3. by (Onx(l — 0P (39)

where p; (x) and b; (x) are independent of n. Since nx(1 — x) > B/2,

s—1

| Tl <1 st =)+ 3 1 poa() Jenxt =
< K(nx(1 — x))®

which completes the proof of (3.6) and therefore of Lemma 3.5.

4. THE DIRECT THEOREM
The direct part of Theorem 2.1 is the following:
Direct THEOREM. Let fe(C, As)s, then ||B,(fir—1,x) —f(x)| <
Mnp2,

Proof. Forfe(C, A,,)p and any ¢ there exist g; € A,, such that || f — g ]| <
Mit® and t¥ | g, lls, < Myt? or | g.ller << M, t8-%". Therefore, recalling
| Bu(sr — 1, x)| < M, |l ¢, we have

| B(f,r — 1, x) — f(0)l
<Ba(f — g, r — LX)+ 11— gl 4+ | Ba(ge ¥ — 1, x) — gdx)|]
< (Mp+ 1) Myt? + || Bu(ge, r — 1, X) — g0l

Choosing ¢t = n~1/2, we have only to show

I Bu(pyr — 1, %) — )| < Mgn™(| oy +114])  for ded,,.
“.0n

Inequality (4.1) is the crucial step in the direct theorem and the only step in
which the combination (1.2) (or a similar condition) need be considered.
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One should also note that actually (4.1) is the direct part of the global
saturation result.
For A/n < x < 1 — A/n we will use Taylor’s formula around x and write

Formulae (3.8) and (3.9) can also be written as

Z (% - x)zl Py i{x)

k=0
(At — ) GA= D K )
4.2)
and
* ok 21+
Lgo (7 — x) 1 P, (x) = T (Bl(l — 2)(x(1 — x))!
+B2(x)2‘(1__n__2)__+ +B()x(l x))
4.3)
To estimate [; we simply recall
r—1 1
Z ¢ P 0 for /=12,.,r—1 (4.4)

and therefore, using (4.2) and (4.3), many terms are eliminated and we have
in I; only terms which are polynomials multiplied by

(@ Ji(J. D= q/m)(x(1 — x))"7 $20(x) for I + j = rand 2] > r or

b J(j, D) = AnH00x(1 ~— x)) (%) for I+ j+ 1 = r and
2041 >r.

Incase @)/ +j=ror(byl+j+ 1 = r, using (3.4) of Lemma (3.3) with
m=2r—2l or m =2r — 2] — 1 respectively, we have the estimate
[ J{5, D) < K[n'(l| ¢ llar + 1| 1), i = 1, 2. For bigger r (than in (a) or (b))
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we note nx(1 — x) = A/2, since we assumed 4/n < x < 1 — A/n for this
part of the proof, and therefore, we may multiply by (2ax(1 — x)/A4) until
the denominator is exactly 1/n".

To estimate I, for A/n < x <1 — A/n we write

1<Ky P [ () gm0 dl

fac [ k/n — u |21

= K:éo P () ¢ llar (1l — w)y

du ‘
<Kl|¢ Hzr(z P 1 ()(x(1 — X))~ (_‘ - x)zr

CE ot - (- 4))

n

= Iy(1) + 1(2).

Using the Cauchy-Schwartz inequality, Lemma 3.2 and (4.2) with 4/n <
x < 1 —~ A/n, we have

10 < K191 (5 P& ") (5 Pratol& (1 - K9

n
S Kyl @llar n7" XX < Kyl 95 flay 7277

The estimate of (1) is similar to that of ; .
For min(x, 1 — x) < A/n we use Taylor’s formula around x and write

Bk =10 =809 = 51 % 0 () Prns) 4700

||M~x

1 r—
(,.+1)12C ZPZ'nL

<J.

k/2in

:Il+12'

(___ u) G (u) du

Using (4.2) and (4.3), we observe that for I, since / =0, 1,..., r — 1, the
coefficients of ¢*)(x) are polynomials multiplied by 1/#/, j <<r — 1, and
therefore, using (4.4), ; = 0. Using Lemma 3.3, we have

| Up0w)] < K(| ¢ llar + 11 $1D
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and since for 4 < 1/2", min(x, 1 — x) < | x — k/2'n |, we have

k

LI<KG( L + 16D T 1Cl Y | — x| Priyu®

-1 2'n 2r 172
<KCU Bl + 14D T 13 |3 = 5[ Prns0)
i=0 k=0

The condition min(x, 1 — x) < A/n implies A/nx(l — x) > 1, and
multiplying by (4/nx(l — x))™ wherever (x(1 — x))™ appearsin (4.2) for/ = r,
we have IZZZLO [(k/2'n) — x |*" Pyipi(x)] < Ki/n* and therefore I, <
M| ¢ llor + 11 S1X(L/n7).

5. THE ELEMENTARY DESCRIPTION OF THE INTERPOLATION SPACE

In this section we shall prove the equivalence of (C) and (A) or (B) of
Theorem 2.1 which will complete the proof of that theorem. Since the result
is independent of the Bernstein polynomial approximation, we will summarize
it separately by:

THEOREM 5.1. For fe C[0, 1] the conditions

sup | XEERRANf ()l < M

rh<x<l—rh

(where X = x(1 — x) and 4f(x) :f(x + g) —f(x - g)) 5.1

and f € (C, Ay,)s are equivalent.

Recall that 4,, = {f: f® 1 e A.C. locally in (0, 1) and | X"f®(x)] < M}
and that for fe (C, A4,,); there exists M; such that for every ¢ there exists
g, € A,, satisfying

Nf— gl + 2l g llar < My2® or || f— gl < My2? and | geller << MytB%,

Therefore,

| XPRRRAZf ()| < XPPh2 | A3r(f(x) — g,(x0))| + XBh2 | A2rg (%)

< XERR2¥ | f — g, ||+ XPI2hoF | Arg(x)] .
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Choosing ¢ = A - X712 it is clear that we can complete the proof that
S (C, As)p satisfies (5.1) if we can show for all g, € 4,,

| d¥g(x)] < Kh*"X~"| g, ll,, where K is independent of
1
h<§7,Xandgt. (5.2)

To prove (5.2) we use the integral form of Taylor’s formula

aei< Y (7))

120, l=—7

(x —1h — w1 g2 (u) du | .
ih

Using the definition of || g, |5, , we have

@ x — 2r—1
J. (u — x 4+ )1 | gen(u)| du <l g, Il J‘ (u— x4 ) d
@—1n " e ur

For x < { and 4 < 1/4r (and therefore | —u >} for x < u < x+ rh)
and / > 0 we have

x x
sz |x—lh—u|2r—1U—rdu<4rf | x — Ih — u Pty du
x—1lh 2

~Lh

<armin |[* |x—th—u |, % — I — u [ d
—1h

1 @
G

< 47 min (J 0RY, (g5 35 (W)

Using the estimate (1/r)(/h)" and (1/(x — Ihy")(1/2r)(Ih)* for x < (r + Dk
and x > (r -+ 1)k respectively, we have

r 2r 2r
<4T;(lh)'<4f17h <m’

Chr ST X
and
, 1 (lh)Zr 127 X h2r hz'r
I<%5a=m <Yz o) <My

For I < 0 the estimate is somewhat simpler and for x > } a similar estimate
holds.

To prove that (5.1) implies f€ (C, A,,)s we have to construct g; such that
Hf— gl < Mit® and || g;lley << MytP-2". Let (x) be a C?(I) function
satisfying ¢(x) = 1forx < %, (x) = Ofor x = # and '(x) < 0. Obviously
J(x) = F(x) $(x) + f()A — (x)) = fi{(x) + fo(x), and it is enough to find
g:,: such that || g;, — fi | < (M,/2) t? and [ g |l < (My/2) t7275, We shall
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construct g,(x) in detail, and g,,(x) can be given similarly. Let 1,(x) = $(4'x).
We can now write

Ax) = f(x) lx) = ff(x) )1 — $hea(¥) + () Pu(x) - (5.3)

because supp ¥p.1(x) C{x: () = 1}.
Define for h = 0

700 = ()7 [ [ 8 e e s o )
X dhty -+ dlityy - ) (5.4)
Using (5.1) for x < § and A < 1/16r (and therefore 1 — (x + 2rh) > }),
169 — £

2r hf2r hjf2r M(ul + -+ um)
8/2
<or () [ T T g

8
< min =M2;l%/—2,M2 — hmg (5.5)

Moreover

f(zr)(xn _‘ 2r r (12]()( 1);+1 A;h/zr f(x 4 %}h)

j=1

20\ B 2 M APRRR ) 18
< (T) ( ) O AN ry 7y

8/2
H/2’h/)

We define for ¢ < 1/16r and [ such that 211 < ¢ < 2+

< M3h™" min (

8140 = ¥ o300 B = oy () + L@ . (5

For every x at most two terms in (5.3) and (5.7) are different from 0. In
fact for 4 ™1 << x << 3 -4 1, m < I both ,(x)1 — Y,a(x)) = $(x) and
Y1 ()1 — P,(x)) =1 — ¢f,,(x) may be different from 0 and for 3 - 41
x <4 mand x < 471 (1 — Yo%) ni(x) =1 and ,(x) = 1 respectively,
and therefore all other terms are equal to O.

Combining (5.3), (5.4), (5.5) and (5.7) we have for 41 << x < 3-4-m-1

(t . 2—m+1)ﬂ

P g1d(x) — fA(x)] < (t 27 + M, @y

(4—m)B 72

< My(1 + 2%) ¢4,
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for3 -4 ™1 L x 4™

| gu) — A0 < M, L 2T0)

v g <M
and for x < 41
M
| 82:(%) — /() < 55 (t2 W< a2 < Mt

To estimate || g, (x)|l;» we recall that ¢ < 1/16r implies that Supp g,(x) C
[0, §] and there it is enough to estimate sup | x"g®P(x)| 8" < (1 — x) < ).
For 3 - 41 < x < 4™, g,.{x) = fi2-m+1(x) and, using (5.6),

({ . 2—m+1)6
I

< Mzt—27+82~2r+5 . 2m(2r~8)(4—m)r—5/2 4mir—8/2) < M3t—2'r+ﬂ.

| X8 (0] = | X3 mn0)] < Mylr - 27" ¥ x7 -

For x < 4711, g, (x) = fio—fx) and, using (5.6), we have
r xrgi?:)(x)‘ < Mx'(t - 27972 (¢ - 271)B12 < M4-Y - (2-12-1)-2r (22182
g M4(2—l)ﬂ (2—l)-2r < M5t—2r+B_

To show this inequality is valid for 4= < x < 3 - 4-™ we will first define

Srnd®) = Ui = 3 3 ()T )= (3 (30)

=1 i=1
h1/2r hy/2r h2/2r ho /27
X U 4 u 7
R R R R (CE Y O )
ity + o+ vy)) X dity - iy, dv, - dus, . (5.8)

Inspecting the definition, we observe that

Srun®) = S (%)- (5.9

Also we shall show

LEMMA 52. Let g(x) e C*[x,, 1] such that | g®(x)| < M in[x,, 1], then

‘(a—)k [80) — @) < M-k -Br% for xp<x < %

Proof. We use Taylor’s formula
2r—k—1

gk(x _!,_ 7]) e g(k)(x) + ng(lt+1)(x) + + ( g(2r—1)(x)

I
2 —k = D)
1

T+n
T — k=D f (x + 1 — v+ g®(v) dv
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and we can recall that ZZO C(—1Di(jm)™ = 0 for m < 2r which we use for
m < 2r — k — 1 and therefore, using

2r—-k

o+ 7]
j l x 4 n-—v \21‘——/» —1 1 g(21‘)(v)l dv < < M —%°

we have

() 1500 — a9

< ) e [ [ G s g

< KMA-,
To prove now | x"g®(x)| << Mt=2+* for 4—™-1 < x < 3 - 4-™ we write
£1/(X) = f13-m(X) (%) + frg-mnr(X)A — 3, (x))

since | — ,,4(%) = Pp(x) =1 for 471 << x < 3-4™ We can also
express gy(x) by

glt(x) = (fgz—m(x) —ftz—m,tz—mﬂ(x)) l/lm(X) +ftz—m,t2—m+l(x)
+ (ftz—m+1(x) —f;g—'",tz—""*l(x))(l - l/’m(x)) = I](t) X) + 12(t5 X)
+ Iy(t, x).

The estimate of I§"(¢, x) is given by

xfl 12<2) (1, x)| < 22rx7 ,ft(;_riﬂ(x)l < 22rM3t—2r+{3

To estimate [(f, x) we recall ¢re C* and therefore | ¢*)(x)| < K, and
| $i)(x)] < 4mkK, . Using the above and Lemma 5.2, we have

x| 180(1, )|

= xT

lgo (21:) lﬁ&k’(x)(%)zqu [fm’"‘(x) —ftZ'"‘,tz-mH(x)]

1

2r
< 3r(4—m)r Z (21:) 4kaiK(12—m+l)k M‘Z(tz—'m)~2r . (tz—m)B —(Z:@/T

k=0
< L4—mt—27+322m k—m Ictk22mr

< Le27+P (since £F < (27Y)F L 2-™%),

The estimate of x"I{*"(¢, x) is similar.
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