
JOURNAL OF APPROXIMATION THEORY 26, 277-292 (1979)

A Global Inverse Theorem for Combinations
of Bernstein Polynomials

Z. DITZIAN

Department ofMathematics, University of Alberta,
Edmonton, Alberta, Canada T6G 2GJ

Communicated by R. Bojanic

Received December 20, 1977

1. INTRODUCTION

The well-known Bernstein polynomials are given by

It was shown by H. Berens and G. G. Lorentz [1] that I Bn(f, x) - j(x)1 ~

M(x(l - x){n),,-/2 ifand only ifjE Lip* ex, i.e., if and only if II Lf h:fllclh.l-h] ==
II j(x + h) - 2j(x) + j(x - h)llclh,l-h] = O(h"). The combination of Bern­
stein polynomials given by

(2' - 1) Bn(f, r, x) == 2'B2n(f, r - I, x) - BnU, r - I, x),

Bn(f, 0, x) == Bn(f, x).
(1.2)

was introduced by P. L. Butzer [2] who showed that for smooth functions
Bn(f, k, x) - f(x) tends to zero faster than Bn{f, x) - f(x). In [3] the local
saturation of Bn(f, k, x) - f(x) was investigated. C. P. May [5] found a local
inverse theorem for Bn(f, k, x) - j(x) (in fact, a more general combination
was treated). These results related II Bn(f, k, .) - fOllcla,b] to smoothness in
(ex, fJ) where [ex, fJ] C (a, b) and [a, b] C (0, I). Since [3] and [5] have appeared
some mathematicians expressed interest in the corresponding global result.
In this paper we shall overcome the difficulty caused by the singularity at 0
and 1, and obtain such a result. We shall use the technique of space inter­
polation and characterize in Section 5 the intermediate space in an elementary
way (that is, using smoothness rather than interpolation between spaces).
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2. THE MAIN RESULT

In this section we shall state the main result of the paper. We shall also
analyze what inequalities are needed for the proof which will be completed
in later sections.

Let us denote Ilfll = SUPO';;X';;1 Ij(x)[, IIfl12r = SUPO<X<1 Ij(2r)(x) xr(l - xli
and A2r = {f: IIfl12r < 00 and j(2r-1l(x) E AC locally} (j(2r-l) being abso­
lutely continuous locally so that r j(2r)(u) du = j(2r-1l(x)). The Peetre K
functional is given by

(2.1)

The intermediate space (C, A 2r)s for some 0 < fJ < 2r is the collection
of allffor which the norm SUPt>o t-SK(t2r,J) is finite. One can easily see that
it is equivalent to use K1(t

2r,j) = infPEA (lif - gil + t 2r(11 g II + II g 112r))
2r

instead of K(t 2r,J).

THEOREM 2.1. For fE qo, 1], Bn(J, r - I, x) given by (1.2) and 0 <
fJ < 2r the following are equivalent:

(A) II Bn(/, r - 1, x) - j(x)11 = O(n-S/2), n ---+ 00;

(B) fE (C, A2r)s ;

(C) sUPhr<x<l-hr 1(1 - X)S/2 h-IlLl~rj(x)1 < M where
j(x + h12) - j(x - hI2).

THEOREM 2.2. In Theorem 2.1, (A) can be replaced by

where

II Bn(r)(J, x) - j(x)/1 = O(n-Il /2), n ---+ 00

r-l
Bn(r)(J, k) = L C;(n) BniJ, x)

i~O

satisfies:

(a) n = no < ni < nr- 1 < Kn (K independent ofn);

(b) L:;:~ I Ci(n)I < C (C independent ofn);

(c) L:;:~ Ci(n) = 1; and

)
r-1 )(d L:i~O Ci(n)(llniP = 0, p = 1,2,... , r - 1.

Remark 2.1. It is obvious that Bn(f, r - 1, x) is a special case of Bn(r)(J, x)
with Ci(n) = C i and ni = 2in. The combinations treated by C. P. May [5]
are also a special case. However, we do not see much advantage in the
generalization of Theorem 2.1 in Theorem 2.2 as it yields no new idea but is
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just an observation of what is used. We will simply mention, while proving
Theorem 2.1, when (a)-(d) may replace special properties of Bif, r - 1, x).

Remark 2.2. For r = 1 the equivalence of (A) and (B) as well as (B)
implies (C) was shown by Berens and Lorentz [IJ. However, (C) implies (B)
was not shown there and is new even for r = I.

Remark 2.3. Since the result displayed most prominantly in Berens and
Lorentz' paper is I B,,(f, x) - f(x)1 :os; M(x(l - x)ln)ct/2 if and only if
fE Lip* ex, 0 < ex < 2, one would expect I B,.(f, r - I, x) - f(x)1 :os;
M(x(1 - x)ln)ct/2 if and only if SUPrh<x<l-rh I Ll~rf(x)1 :os; Mh" for 0 < ex < 2r.
This result is not true since for f(x) = x 3 and r = 2 I B,,(f, 1, x) - f(x)l r-o.J

x(l - x)(1 - 2x)ln2 (and one may choose x = lin and ex = 4 - E).
The proof of the equivalence of (B) and (C) has no relation with Bernstein

polynomials and will be given in Section 5.
The proof of the implication (B) ~ (A) is of the type usually called direct

theorem and will be obtained in Section 4.

To prove that (A) implies (B), a direction usually called the inverse result,
we write

K(t2r, f) :os; II Bif, r - 1, x) - f(x)11 + t 2r II Bif, r - I, x)112r' (2.2)

We recall that (A) yields II B,,(f, r - I, x) - f(x)11 :os; M /n S / 2 and that (1.2)
yields B,,(f, r - 1, x) = LO<i<r-1 CiB2 i n(f, x) and therefore

II BnU; r - I, x) 11 2r :os; M 1 sup II B2i"U; x) 11 2r • (2.3)
0<i<r-1

It is enough to show the following two inequalities:

and

(2.4)

for fE A 2r . (2.5)

These combined with (2.2) and (2.3) imply

K(t 2r, f) :os; Min-S / 2+ t 2rnrK(n-r, f)), (2.6)

which, following Berens and Lorentz' method, implies K(t 2r,f) :os; Mst B• We
shall prove (2.4) and (2.5) in Section 3. We may observe that, pending (2.4)
and (2.5), we proved that II L;:~ Ci(n) B,,{f, x) - f(x)11 :os; M 1n-B/2 with
I C1(n) 1 :os; M 2and n = no < nl < ... < nr_: :os; Kn impliesfE (C, A2r)s and
this does not depend on the particular structure of (1.2). It is for the direct
theorem that we need either (1.2) or a similar combinatorial structure «c) and
(d) of Theorem 2.2).
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3. TIrE COMPLETION OF THE INVERSE RESULT

In this section we shall prove (2.4) and (2.5) which together will complete
the proof of the inverse result.

LEMMA 3.1. For fE qo, 1],

(I) n! n-l I ( k )
Bn (f, x) = (n -I)! k~O iJ lIn f n Pn-l.k(X)

where

LJ lIn f(x) = f(x + ~) - f(x).

(3.1)

Proof See [4, p. 12]. (Ll~/nj(x) here is not the same as in [C] but rather
as in [4]; it will be used only in this section, so there is no possibility of
confusion).

LEMMA 3.2. For Pn,k(X) given in (1.1) we have

(3.2)

and

(3.3)

Proof Inequality (3.3) follows (3.2) substituting g = 1 - x and
v = n - k. We can write

n nm 1 n nm (k + 1) (k + m)
I~O (k + 1)m Pn.k(x) ~ xm t:o (k + 1)m (n + 1) (n + m) Pn+m.k+m(x)

LEMMA 3.3. Suppose x rp2rl(x) E Loo[O, 1], and j<2r-U(x) E A.C.[ex,,8] for
all ex,,8, 0 < ex < ,8 < 1, where X = x(1 - x). Then,for m = 1,2,... , r - 1,

I xr-mj(2r-ml(X) I ~ B(m)(IlfI12r + Ilfll). (3.4)

Proof It is well known that

Ip2r-mlmI ~ Bm(11 j(2r
l Ikx,(l/4.3/4) + IIfllc(1/4.3/4) ~ KBmOlfl12r + Ilfll),
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since this follows a Kolmogorov-type inequality for an interval. It is enough
to prove the theorem for x ~ t since the proof for x ?o -! is very similar.
By induction we have

I 1/2 I
I jl2r-ml(x) - jl2r-ml(!) 1 = J" j(2r-m+l)(u) du

f
1/2 du

~ B(m - I) . K . (111112r + 11111) x ur-m+l

and therefore

x,-m I jI2r-ml(x)1 ~ B(m - I) K(\\!112r + II!I\) + I jl2r-ml(!)!

which completes the proof.
We are now in a position to prove (2.5) and (2.4) which will constitute

Lemmas 3.4 and 3.5 respectively.

LEMMA 3.4. Let1 E A 2r ; then (2.5) is valid, i.e.

Proof For 1 ~ k ~ n - 2r - 1 and .d lln j(k/n) = f«k + 1)/n) - f(k/n),
we have

We will show that for k = 0 (and similarly for k = n - 2 r) 1 n2, .di;n j(O) 1 <
Kn r 11/112r' Using Lemma 3.3 (which will be used later in full generality) to
justify integration by parts, we have

n2, 2r (2r) Jk/n= L (-I)k u2r- 1jI2rl(u)du
(2r - I)! k~1 k 0

2r-1n2r(_1)i+12' (2r)(k)i. (k) 2r-1
+L ., L(-l)k -jl,l-=I+LJi •

i~1 1. k~l k n n i~1

We can now write

n
2r J2r

/
n

I I 1 ~ (2r _ I)! 22r
0 U2r- 1

I jl2r>(u)1 du ~ M1 IIfl12, n';
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= n2~,-i (_ I)i+1 I. (_ I)k (2r)( I (Xlk(k - 1) ... (k - I))j(i) (~)
l. k~l k I~O n

i-I

== L Ji . l
I~O

where (Xl depends on [ and i only. We have now

Ihl I ~ I (Xl 2r (;r - I) n2r- i k~+l (- I)k e{=}=II) pi) (~) I

= I 2r (2r -l) 2r-i .:12r-l-1j(i) (~)I
(Xl i! n lin n

~ Mu SUp Ip2rl(g)1 ~ Mu «[I+lfI
I
I2)r

jn
)r

(I+I)ln~g~2rln

which concludes the proof of 1n2r.:1i/n!(O)1 ~ KnT IIfl12T .
Therefore, using Lemma 3.1,

. .Tn-2T p n-2T k(X)
~ K1Iii 112T X k~O «k + l)jn)' «n -' 2r + I - k)jn)'

n-2T xr XT
~ K1 11fl12r {;o «k + I)jn)' + «n - 2r + I - k)jn)' Pn-2T.k(X)

which, using Lemma 3.2, implies (2.5).

LEMMA 3.5. For fE qo, 1], (2.4) is valid, i.e., II Bn(f, x)112T ~ AnT Ilf!l.
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Proof For x that satisfies min(x, I - x) < Bin, using Lemma 3.1, we
write

n-2r I k Ixr I B~r)(f, x)[ ~ xr n ... (n - 2r + 1);to Lliin/(n) Pn- 2r ,k(x)

~ (x(l - x))' n2r2r IIIII ~ nr . 2r 11/11[nx(l - x)]'

~ nr2rBr ll/ll·

The case Bin < x < 1 - Bin is somewhat more complicated. One can
write p~.ix) = ((k - nx)lx(l - x)) Pn,k(X). Repeated differentiation shows
that P1:,',2(x) is a sum of terms of the type

(k - nx)2r-21-m nl
ql.m(X) (x(l _ x))2r-1 Pn.ix)

where 1 ;): 0, m ;): 0, 2r - 21 - m ;): °and ql,m(X) is a polynomial in x that
does not depend on nand k. To complete the proof ofthe Lemma we have to
estimate I x rB~2r)(f, x)1 for Bin ~ x ~ 1 - (Bln)(Bln < t). Since xrB~2r)(f, x)
is the sum of elements of the type

n k
1(/, m, n) = ql.m(X) Xl-rn l L (k - nx)2r-21-m1(1/) Pn.k(x) for I, m ;): °

k~O

and 2r - 21 - m ;?: 0, we have to estimate 1(/, m, n) for Bin < x < I - Bin.
Using the Cauchy-Schwartz inequality, we have

(

' n )1/2
11(/, m, n)1 ~ I ql.m(x)1 Xl-rnlll/ll ~o I k - nx 14HI-2m Pn.k(x) .

Recalling the definition of Tn,sCx) ([2] and [4]) i.e.

n

Tn.s(x) == L (k - nx)S Pn.k(x),
k~O

we shall show

s B BI Tn 2S(X)j ~ Kn XS for - ~ x ~ I - - .. n n

Using (3.6), we have

(
B )-m/2

~ Knr[nx(l - x)]-m/211/11 ~ K 2 nr 11/11·

(3.5)

(3.6)
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To prove estimate (3.6) we recall [2, p. 56]

T... s+1(x) = X[T~,s(x) + nsTn.s_I(x)], Tn.o(x) = 1, Tn.I(x) = O. (3.7)

Therefore (as can be proved by induction),

s-I
Tn.2.(x) = p.(n(x(l - x»)s + I Pi,.(x)[nx(l - x)]'-; (3.8)

i~1

and

s-I
T".2s+1 = b.(1 - 2x)(n(x(l - x»)S + L b;,.{x)[nx(1 - X)]'-i (3.9)

i=1

where P;..(x) and bi..(x) are independent of n. Since nx(l - x) > B12,

I Tn. s(x) I ~ IPs In(x(l - x»s + (t: IPi..{X) I( ; )}nX(l - x»S

~ K(nx(l - x»S

which completes the proof of (3.6) and therefore of Lemma 3.5.

4. Tl:lE DIRECT Tl:lEOREM

The direct part of Theorem 2.1 is the following:

DIRECT THEOREM. Let fE (C, A2r)/3, then II Bn(/, r - 1, x) - f(x)11 ~
Mjn/3/2.

Proof ForfE (C, A2r)/3 and any t there existgt E A 2r such thatllf - gt II ~
M l t/3 and t 2r II gt 112r ~ M l t/3 or II gt 112r ~ Ml t/3-2r. Therefore, recalling
II B,,(4), r - 1, x)11 ~ M 2 11 4> II, we have

II B..(/, r - 1, x) - f(x)!1

<; II B,,(f - gt , r - 1, x)11 + Ilf - gt II + II B,,(gt , r - 1, x) - gt(x)II
~ (M2+ 1) M l t/3 + II B..(gt , r - 1, x) - gt(x)lI·

Choosing t = n-I / 2, we have only to show

II B,,(4>, r - 1, x) - 4>(x)1I ~ Man-r(11 4> 112r + II 4> II) for 4> E A 2r ·

(4.1)

Inequality (4. l) is the crucial step in the direct theorem and the only step in
which the combination (1.2) (or a similar condition) need be considered.
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One should also note that actually (4.1) is the direct part of the global
saturation result.

For Aln ~ x ~ 1 - Aln we will use Taylor's formula around x and write

Bn(ef>, r - I, x) -ef>(x)

1 r-l 2
i
n x (k 2r-l

- (2 _ I)' L Ci L P2in,k(X) J . 2i - u) ef>(2r)(u) du
r . i=O k=O k/2'n n

= II + 12 ,

Formulae (3.8) and (3.9) can also be written as

n k 2l
L (- - x) Pn.k(x)
k~O n

= -4 (A
1
(X(l - x))! + A2(x) (x(l - x))l-1 + ... + A!(x) x(l ;: x) )

n n n

(4.2)
and

n (k 2l+l 1 (L - - x) Pn.k(X) = ----r+l B1(l - 2x)(x(l - x))!
k~O n n

+ B2(x) (x(l - X))l-l + ... + Blx) x(l ~ x) ) .
n n

(4.3)
To estimate II we simply recall

for I = I, 2, ... , r - 1 (4.4)

and therefore, using (4.2) and (4.3), many terms are eliminated and we have
in II only terms which are polynomials multiplied by

(a) J1U, I) = (ljn!+i)(x(l - X))H ef>(2!)(X) for 1+ j ~ rand 21 > r or

(b) J2U, I) = (ljnl+i+1)(x(l - X))H ef>(21+lJ(X) for 1+ j + 1 ~ rand
21 + 1 > r.

In case (a) 1+ j = r or (b) 1+ j + 1 = r, using (3.4) of Lemma (3.3) with
m = 2r - 21 or m = 2r - 21 - 1 respectively, we have the estimate
I JiU, 1) ~ Kjnr(ll ef> Ib + II ef> II), i = 1,2. For bigger r (than in (a) or (b))
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we note nx(1 - x) ~ A12, since we assumed Aln < x < I - Aln for this
part of the proof, and therefore, we may multiply by (2nx(1 - x)IA) until
the denominator is exactly llnr.

To estimate 12 for Aln < x < I - Aln we write

n IfX k )2r-I II12 1 ~ K k~O P".k(X) kin (n - U ¢(2r)(U) du

n IfX I kin - U 1
2r- I I

= K k~O P",k(x)11 ¢ 112r kin (u(1 _ U)Y du

(

n k 2r
~ K II ¢ 112r ];0 P",k(X)(X(1 - x»-r (,1 - x)

n-I (k 2r (k k -r)+ L Pn,k(X) - - x) - (1 - -))
~I n n n

Using the Cauchy-Schwartz inequality, Lemma 3.2 and (4.2) with Aln <
x < I - Aln, we have

(

"-1 k 4r)If2(n~I k k -2r)If2

12(2) :::;; KII ¢ 112r t:I Pn.k(x)(n - x) t:I Pn.k(x)(n (I - n))

:::;; K 2 11 ¢ 112r n-rxrx-r ~ K211 ¢ 112r n-r.

The estimate of Ill) is similar to that of II .
For min(x, I - x) < Aln we use Taylor's formula around x and write

I r-I 2 i n

(r + I)! i~ Ci k~O P2in ,k(X)

X fX . (+ - U)f ¢(f+1)(U) du
kf2'n 2 n

= II + 12 ,

Using (4.2) and (4.3), we observe that for II' since I = 0, I, ... , r - I, the
coefficients of ¢lO(x) are polynomials multiplied by llni, j :::;; r - I, and
therefore, using (4.4), II = O. Using Lemma 3.3, we have

I U¢(f+!)(U)I :::;; K(II ¢ 112r + II ¢ II)
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and since for A :(; lJ2N l, min(x, 1 - x) < I x - kj2in I, we have

r-1 (2
i
n k 2r )1/2

:(; Kc([1 ep 112r + II ep II) i~ I Ci I .to I 2in - x I P2in,k(X) .

287

The condition min(x, 1 - x) < Ajn implies Ajnx(1 - x) > 1, and
multiplying by (Ajnx(1 - x))m wherever (x(l - x))m appears in (4.2) for I = r,

2'n
we have I Lk=O l(kj2in) - X 1

2r P2in,k(x)1 :(; Kdn2r and therefore /2:(;

M(II ep 112r + II ep [I)(ljnr).

5. THE ELEMENTARY DESCRIPTION OF THE INTERPOLATION SPACE

In this section we shall prove the equivalence of (C) and (A) or (B) of
Theorem 2.1 which will complete the proof of that theorem. Since the result
is independent of the Bernstein polynomial approximation, we will summarize
it separately by:

THEOREM 5.1. For fE C[O, 1] the conditions

sup I XIl/2h-IlLl~rf(x)1 :(; M
rh<x<l-rh

(Where X = x(1 - x) and Llf(x) = f(x + ~) - f(x -~)) (5.1)

andfE (C, A2r)1l are equivalent.

Recall that A2r = {f: f<2r-1) E A.C. locally in (0, 1) and I xrp2r)(x)I < M}

and that for fE (C, A 2r)1l there exists M 1 such that for every t there exists
gt E A 2r satisfying

Therefore,

I XIl/2h-IlLl~rf(x)1 :(; X Il /2h-1l I Ll~r(f(x) - gt(x))1 + XIl/2h-1l [ Ll~rgix)1

:(; XIl/2h-1l22r Ilf - gt II + X Il /2h-1l I Ll~rgix)1 .
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Choosing t = h . X-I/2, it is clear that we can complete the proof that
fE (C, A2~)S satisfies (5.1) if we can show for all gt f3 A2~

1Lli~gix)1 :'( Kh2rx-r II gt 11 2r where K is independent of

1
h < 2r ' X and gt . (5.2)

To prove (5.2) we use the integral form of Taylor's formula

I Lli~gix)l:'( ± (2r)1r (x - lh - u)2r-1 g~2rJ(u) du ,.
z".'O.I=-r r + I x-Iii

Using the definition of II gt 112r , we have

r (u - x + Ih)2r-1 I g~2r)(u)1 du :'( II gt 11
2r
r (u - x ~ Ih)2r-1 duo

x-Iii x-Iii U

For x :'( t and h < 1/4r (and therefore I - u > t for x :'( u :'( x + rh)
and I > 0 we have

1=r I x - lh - U 1
2r- 1 u-r du :'( 4rr I x - lh - U 1

2r- 1 u-r du
x-Iii x-Ih

:'( 4r min Ifx I x - lh - u Ir-I du, __I -r fX I x - lh - U 12r- 1 dut
I X-Ih (x - lh) x-Ih I

:'( 4r min G(lh)', (x ~ lh)' ~r (lh)2r) .

Using the estimate (llr)(lh)' and (l/(x - lh)')(l/2r)(lh)2r for x :'( (r + l)h
and x > (r + l)h respectively, we have

and

r I (lh)2r r 12r ( x r h2r h2r
I :'( 4 2r (x _ lh)' :'( 4 2r x _ lh) 7:'( M xr .

For I < 0 the estimate is somewhat simpler and for x ;;? t a similar estimate
holds.

To prove that (5.l) impliesfE (C, A2r)s we have to construct gt such that
III - gt II :'( Mit S and II gt 112r :'( M I t S- 2r. Let if(x) be a C 2r(I) function
satisfying if(x) = I for x :'( t, if(x) = 0 for x ;;? i and if'(x) :'( O. Obviously
I(x) = I(x) if(x) + I(x)(l - if(x» == hex) +12(x), and it is enough to find
gi,t such that II git - ft II :'( (MI /2) t S and II git 112r :'( (MI /2) t-2r+S. We shall
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(5.5)

construct glt(x) in detail, and g2lx) can be given similarly. Let lh(x) =0' tP(4Ix).
We can now write

1-1
flex) = f(x) tP(x) = L: f(x) tPk(X)(l - tPk+1(X)) + f(x) tPb) (5.3)

k=O

because supp tPk+1(X) C {x: tPk(X) = I}.
Define for h ~ 0

(2r )2r Jhl2r J h/2r 2r (2r)fh(X) = h'" L· (-1);+1 f(x + j(Ul + ... + U2r))
o 0 J~l J

X dUI .•• dU2r . (5.4)

Using (5.1) for x < ! and h < 1/16r (and therefore 1 - (x + 2rh) > k),

I f(x) - fh(x)1

(
2, )2r f h/2r fh/2r M(UI + + U2r)8

:s; 88
/
2 -h .. , (+ ( + + ))8/2 dUl '" dU2ro 0 x , Ul U2r

. I h
il

M' 1 h812l:s; mm 1M2 X8/2 ' 2 ,8/2 .

Moreover

We define for t < 1/16, and I such that 2-H < t ~ 2-1

1-1
gl,iX) = L '!;'2-k(X) .pk(X)(l - tPk+l(X)) +f;'2-'(X) tP1(x). (5.7)

k~(}

For every x at most two terms in (5.3) and (5.7) are different from O. In
fact for 4-m - l < x < 3 . 4-m-1, m ~ l both .pm(x)(l - tPm+l(X)) = .pm(x) and
iflm-l(X)(l - .pm(x)) = I - iflm(x) may be different from 0 and for 3 . 4-m- l ~
x ~ 4-mand x ~ 4-1-1(1 - tPm(x)) iflm-l(X) = 1 and tPl(X) = 1 respectively,
and therefore all other terms are equal to O.

Combining (5.3), (5.4), (5.5) and (5.7) we have for 4-m - 1 < x < 3 ·4-m - 1
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for 3 . 4-m - 1 ~ x ~ 4-m
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(t . 2-m+l)ll
I glt(x) - h(x) I ~ M 2 (3 . 4-m )lI/2 ~ M at8

and for x ~ 4-1- 1

M M
I glt(x) - h(x) I ~ r8/; (t2-1)8/2 < r8/~ 2-8/2t8 ~ M at8.

To estimate II gl,t(x)1I2r we recall that t < 1/16r implies that Supp glt(x) C
[0, iJ and there it is enough to estimate sup [ xrge~)(x)1 (8-r ~ (I - xl ~ 1).
For 3 . 4-m - 1 ~ x ~ 4-m , gl,lx) = ft2-m+l(X) and, using (5.6),

I xrg~~;)(x)1 = I x~f/~~m+l(x)1 ~ M/t . 2-m +1)-2r xr . (t . ~~;+1)8

~ M2t-2r+82-2r+8 . 2m(2r-8)(4-mY-fl/2 4m (r-fl/21 ~ M at-2r+8.

For x ~ 4-1-\ gl,t(x) = ft2-I(X) and, using (5.6), we have

I xrg~~~)(x)1 ~ Mxr(t . 2-1)-2r (t . 2-1)fl/2 ~M44-1r . (2-12-1)-2r (2-21)fl/2

~ Mi2-1)fJ (2-1)-2r ~ M 5t-2r+fJ•

To show this inequality is valid for 4-m < x < 3 . 4-m we will first define

Inspecting the definition, we observe that

fh l .h 2(x) = fh 2 .hl (X).

Also we shall show

(5.9)

LEMMA 5.2. Let g(x) E C2r[xo , I] such that I g(2r)(x)! ~ Min [xo , 1], then

I d k I(dx) [g(x) - gh(X)] ~ M· k . h2r- k

Proof We use Taylor's formula

for
3

X o~ x < 4'

2r-k-1
gk(X + Tj) = glk)(X) + Tjglk+l)(X) + ... + Tj g(2r-11(x)

(2r - k - I)!

+ I INn (x + Tj _ v)2r-k-l gI2r)(v) dv
(2r - k - l)! :r
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and we can recall that 1:::0 (2n(-1 )i(JrJ)m = 0 for m < 2r which we use for
m :( 2r - k - 1 and therefore, using

f
"'+~ 'Y)2r-k

I x + TJ - V 12r- k- 1 [ g(2r)(v)[ dv ~ M 2: _k '
'"

we have

I d k I( dx) [g(x) - gh(X)]

2r (2r) M fh!2r fh!2r<:: " .. . (J'(u + '" + U ))2r-k du ... du
'-": £..., J' (2r - k)! 1 2r 1 2r

,~O . 0 0

~ KMh2r- k •

To prove now I x rgI2rl(x)I ~ Mt-2r+/c for 4-m - 1 < x < 3 . 4-m we write

since 1 - !fim+l(x) = !fim-1(X) = 1 for 4-m- 1 < x < 3 . 4-m. We can also
express glt(x) by

glt(x) = (ft2-m(X) - h2-m,t2-m+I(x)) !fim(x) + ft2-m,t2-m+I(x)

+ (ft2-m+I(X) - f;2-m.t2-m+I(x))(l - !fim(x)) == /1(t, x) + 12(t, x)

+ l a(t, x).

The estimate of 1~2r)(t, x) is given by

To estimate 11(t, x) we recall !fi E C2r and therefore I !fi(k)(x)1 ~ K1 and
I if1~)(x)1 ~ 4mkK1 ' Using the above and Lemma 5.2, we have

xr I 112r )(t, x)1

I
2r 2 d 2r-k

= x r k~O ( {) if1~kl(X)( dx) [ft2-m(x) - f t2-m,t2-m+I(x)]I

~ L4-mr-2r+1J22mk-mktk22mr

~ Lt-2r+1J (since t k ~ (2-1)k ~ 2-mk).

The estimate of xr/~2r)(t, x) is similar.
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